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Abstract

This paper presents a systematic study on aeroelastic stability of a two-dimensional airfoil with a single or multiple

time delays in the feedback control loops. Firstly, the delay-independent stability region of the aeroelastic system with a

single time delay is determined on the basis of the generalized Sturm criterion for polynomials. Then, the stability

switches with variations in time delay are analyzed when the system parameters fall out of the delay-independent

stability region. Flutter boundaries of the controlled aeroelastic system as time delay varies are predicted in a

continuous way by the predictor-corrector technique. Finally, two methods, the polynomial eigenvalue method and the

infinitesimal generator method, are introduced to investigate the stability of the controlled aeroelastic system with

multiple time delays. Numerical simulations are made to demonstrate the effectiveness of all the above approaches.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Aeroelasticity is the field of study that describes the response and stability characteristics of physical systems due to

the interaction of structural, inertial and aerodynamic forces. Flutter, an important phenomenon in aeroelasticity, is the

most dangerous dynamic instability that occurs when the flexible structure absorbs additional energy from the

surrounding airflow. Flutter instability may decrease aircraft performance or even lead to the catastrophic failure of the

structure. Furthermore, the design of the next generation of flight vehicles featuring highly flexible and highly

maneuverable aircraft cruising at supersonic speed needs the active aeroelastic control technology to meet these

contradictory requirements (Librescu and Marzocca, 2002). Active aeroelastic control, also called aeroservoelasticity,

deals with the interaction of aerodynamics, structural dynamics, and servo control dynamics. In this field, the

suppression of flutter instability by active feedback control has received particular attention (Ko et al., 1999; Platanitis

and Strganac, 2004; Bhoi and Singh, 2005).

However, in most of the previous studies in aeroservoelasticity, time delays in control loops were not considered in

the mathematical model of the control system. In fact, some short time delays in control loops are inevitable because of

the dynamics involved in the actuators, sensors, and controllers. The time delays are prevalent when digital controllers,
e front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

a distance from the elastic axis to midchord

ā dimensionless distance of the elastic axis

from midchord, ¼ a/b

b semichord of the airfoil section

ch, ca damping coefficients in plunging, pitching,

respectively

gp, gv feedback gains in pitching displacement and

pitching velocity, respectively

h plunging displacement at the elastic axis,

positive in the downward direction

Ia mass moment of inertia of the airfoil about

the elastic axis, ¼ mr2a
kh, ka plunging, torsional stiffnesses, respectively

l the number of non-zero terms in the

modified sign table of the discrimination

sequence

Lqs quasi-steady aerodynamic lift

m airfoil mass

ra radius of gyration about elastic axis

s the number of variation of sign in the

modified sign table of the discrimination

sequence

sp span of the airfoil

t time

Tqs quasi-steady aerodynamic moment about he

elastic axis of the airfoil

V, VF flow speed and flutter speed of the uncon-

trolled system

xa the distance of the elastic axis from center of

mass

a pitching angle, positive in the nose-up

rotation

l, lc eigenvalues of the controlled and uncon-

trolled system, respectively

ra air density

t, t1, t2 time delays

tc, tcm, tck critical time delays

oF flutter frequency of the uncontrolled system

O; Ō parameter spaces
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analogue anti-aliasing and reconstruction filters, and hydraulic actuators are used (Hu et al., 1998). These time delays

become particularly significant when the control effort demands large control forces or high frequencies. It is therefore

crucial to understand the effect of time delays on control systems. On the one hand, applications of unsynchronized

control forces due to time delay may result in a degradation of the control performance and may even render the

controlled structures unstable, but on the other hand, an appropriate time delay may stabilize an unstable system

(Wang and Hu, 2000).

From theoretical aspects of time delay systems, it is well known that a controlled system is asymptotically stable if all

the roots of the corresponding characteristic equation have negative real parts. For a linear time-invariant system with

time delays, however, the characteristic equation becomes transcendental due to the exponential functions associated

with time delays. The transcendentality brings an infinite number of characteristic roots, which are cumbersome to

handle, as evident from the literature (Niculescu, 2001). To resolve this difficulty, a number of methodologies have been

suggested that assess the stability of time delay systems, such as Stépán–Hassard method (Stépán, 1989; Hassard, 1997),

D-subdivision method (Kolmanovski and Nosov, 1986), and its modified version (Olgac and Sipahi, 2002). In Wang

and Hu (2000), the generalized Sturm criterion was used to determine whether a polynomial equation has positive real

roots. In Hu et al. (1998) the stability of the high dimensional system involving feedback delay was investigated through

the perturbation approach to trace the evolution of the eigenvalues. Time delays also give rise to more difficulties in the

analysis of the nonlinear control system. For example, it has been shown that the nonlinear oscillators with a single time

delay may undergo Hopf bifurcation or more complicated bifurcations such as Hopf–Hopf bifurcation, and chaotic

behaviors. In Hu and Wang (2002), systematic approaches to the problem of stability for the nonlinear system with time

delays have been addressed in detail.

In the field of aeroservoelasticity, the stability and stabilization of the aeroelastic system with time-delayed feedback

control have received much attention in recent years. In Ramesh and Narayanan (2001), for example, the chaotic

motions of a two-dimensional airfoil with cubic pitching stiffness and linear viscous damping were controlled by using

the time-delayed feedback in the form of Pyragas. Four control strategies were implemented with plunging

displacement, plunging velocity, pitching angle and pitching velocity as the feedback signals. The study showed that the

system could be stabilized to a periodic motion if the control was generated by either measuring the plunging

displacement, or pitching angle, or pitching velocity. The results demonstrated that the feedback control signal derived

from the measurement of the pitching variables is more effective in controlling the chaotic motion of the airfoil. Yuan et

al. (2004) investigated the effect of the time-delayed feedback control on the flutter instability boundary of a two-

dimensional supersonic lifting surface. They demonstrated that the time delay in the nonlinear feedback control could

have a profound effect on the stability of the bifurcation motions. For example, it could transform a subcritical Hopf



ARTICLE IN PRESS
Y.H. Zhao / Journal of Fluids and Structures 25 (2009) 1–25 3
bifurcation to a superciritical one. In Marzocca and Librescu (2005) the effects of time delay on the feedback control

of two-dimensional lifting surfaces in an incompressible flow-field was investigated. The stability behavior of aero-

elastic systems with nonlinear time-delayed feedback was analyzed via Pontryagin’s approach in conjunction with

Stepan’s theorems and the associated aeroelastic Volterra kernels. It was found that with proper design, the time delay

could be a more efficient way to control instability than the conventional control strategies without time delay. In

Librescu and Marzocca (2005), the flutter instability of actively controlled airfoils involving a time-delayed feedback

control was investigated via Stepan’s theorems. It was observed that any value of time delay could be detrimental from

the point of view of the aeroelastic response, but short time delays might be beneficial from the point of view of flutter

instability.

The primary aim of this paper is to gain a comprehensive insight into the stability problem of the controlled

aeroelastic system with time-delayed feedback. We concentrate on the delay-independent stability, stability switches

of the aeroelastic system with a single time delay, and efficient numerical methods for the multiple time delays case.

The results given in this paper can be used as the basic material to design more advanced control systems with

time delays. The paper is organized as follows. In Section 2, the aeroelastic equation of an airfoil with a single

time delay in feedback loop is established. In Section 3, the generalized Sturm criterion and the predictor-

corrector method are used to predict the stability of the controlled aeroelastic system with a single time delay.

Section 4 presents an approach to compute critical time delays of the system with multiple time delays. In Section 5,

the rightmost eigenvalues of the linear aeroelastic system with multiple time delays are determined by solving

the eigenvalue problem for an approximation matrix to the infinitesimal generator. In Section 6, several conclusions

are drawn.

2. Aeroelastic equations of the controlled system

The study begins with an airfoil oscillating in pitch and plunge, as shown in Fig. 1, where the plunging deflection is

denoted by h, positive downward direction, and the pitching angle is a, positive nose up. Furthermore, b is the semi-

chord length, xa the distance of the elastic axis from center of mass, ā the dimensionless distance of the elastic axis from

midchord, kh the plunging stiffness, ka the torsional stiffness, and V the flow speed.

For the traditional models in aeroelastic control, no time delay is taken into consideration. However, because of the

delay phenomena, the feedback is done with the outdated state of the system. For convenience, we assume that the

control strategy is implemented with the pitching velocity as the time-delayed feedback signal, thus the closed-loop

aeroelastic equations of the airfoil can be expressed as

m €hþmxa €aþ ch
_hþ khh ¼ �LqsðtÞ, (1)

mxa
€hþmr2a €aþ ca _aþ kaa ¼ TqsðtÞ þ gv _aðt� tÞ, (2)

where gv is the velocity feedback gain, and tX0 is the time delay in the feedback. The definitions of other parameters

can be found in Nomenclature.
ab

kh

z

elastic axis

+h

+�

mass center 
x�

k�

x

V
bb

Fig. 1. Schematic figure of a 2-dof airfoil.
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For a two-dimensional and incompressible flow, the quasi-steady aerodynamic lift and moment are given by (Zhao,

2007)

Lqs ¼ prab2spð
€hþ V _a� bā€aÞ þ 2praVbsp Vaþ _hþ b 1

2
� ā

� �
_a

� �
, (3)

Tqs ¼ prab2sp bā €h� Vb 1
2
� ā

� �
_a� b2 1

8
þ ā2

� �
€a

h i
þ 2praVb2sp āþ 1

2

� �
Vaþ _hþ b 1

2
� ā

� �
_a

� �
. (4)

Combining Eqs. (1)–(4), we have the following aeroelastic equations:

c0 €hðtÞ þ c1 €aðtÞ þ c2 _hðtÞ þ c3 _aðtÞ þ c4hðtÞ þ c5aðtÞ ¼ 0, (5)

d0
€hðtÞ þ d1 €aðtÞ þ d2

_hðtÞ þ d3 _aðtÞ þ d4hðtÞ þ d5aðtÞ ¼ gv _aðt� tÞ, (6)

where c0; . . . ; c5 and d0; . . . ; d5 are given in Appendix A.

The closed-loop aeroelastic equation in the compact state space form can be written as

_X ¼ A0ðV ÞX þ A2ðgvÞXðt� tÞ, (7)

where X ¼ ½ h a _h _a �T, the matrices A0 and A2 are given in Appendix B.
3. Stability analysis of the controlled system with a single time-delay

3.1. Delay-independent stability

A system is said to be delay-independently stable if it is asymptotically stable for arbitrary time delays, that is, the

system stability is independent of time delays. To find the parametric region of the delay-independent stability of Eq.

(7), we substitute the candidate solution X ¼ X̄ elt into Eq. (7), which yields the following characteristic equation:

detðlI � A0ðV Þ � A2ðgvÞ e
�ltÞ ¼ 0. (8)

The above characteristic equation can be expanded as follows:

Dðl; tÞ ¼ PðlÞ þQðlÞ e�lt ¼ 0, (9)

where P(l) and Q(l) are two polynomials of real coefficients, and are given in Appendix C. The conditions for the

delay-independent stability of Eq. (7) can be stated as follows (Hu and Wang, 2002).

Theorem 1. The linear system governed by Eq. (7) is delay-independently stable if and only if the following two conditions

hold true:
(a)
 the characteristic polynomials PðlÞ þQðlÞ, corresponding to the case t ¼ 0, is Hurwitz stable;
(b)
 the marginal stability condition Dðio; tÞ ¼ 0 has no real root o for all given time delay tX0.
For the first condition, the Routh–Hurwitz stability conditions that govern the asymptotic stability of the system are

given by

R1 ¼ p3 þ q340;

R2 ¼ p2 þ q240;

R3 ¼ p040;

R4 ¼ ðp1 þ q1Þ½ðp3 þ q3Þðp2 þ q2Þ � ðp1 þ q1Þ� � ðp3 þ q3Þ
2p040:

8>>>><
>>>>:

(10)

For the second condition, the generalized Strum criterion can be used to determine whether Dðio; tÞ ¼ 0 has any real

roots or not. For this purpose, let

PRðoÞ ¼ Re½PðioÞ�; PI ðoÞ ¼ Im½PðioÞ�;

QRðoÞ ¼ Re½QðioÞ�; QI ðoÞ ¼ Im½QðioÞ�:

(
(11)
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From Dðio; tÞ ¼ 0, we can then separate the polynomial into its real and imaginary parts, and write the exponential in

terms of trigonometric functions to get

PRðoÞ þ iPI ðoÞ þ ðQRðoÞ þ iQI ðoÞÞ � ðcosðotÞ � i sinðotÞÞ ¼ 0. (12)

Because io is purely imaginary, PR and QR are even polynomials of o, whereas PI and QI are odd polynomials. In order

that Eq. (12) holds, both the real and imaginary parts must be zero. That is,

PRðoÞ þQRðoÞ cosðotÞ þQI ðoÞ sinðotÞ ¼ 0, (13)

PI ðoÞ �QRðoÞ sinðotÞ þQI ðoÞ cosðotÞ ¼ 0. (14)

In order that Eq. (9) has a pair of pure imaginary roots �io for tX0, it is necessary that jPðioÞj2 ¼ jQðioÞj2 holds, that
is

F ðoÞ ¼ P2
RðoÞ þ P2

I ðoÞ � ðQ
2
RðoÞ þQ2

I ðoÞÞ ¼ 0, (15)

has a positive root o. Note that this is a polynomial equation without any trigonometric terms involving delay t, the
quasi-polynomial Dðio; tÞ ¼ 0 has no real roots o for tX0, if and only if

F ðoÞ ¼ 0 (16)

has no real roots (except for zero).

For the aeroelastic system described by Eq. (7), F(o) can be expressed as

F ðoÞ ¼ o8 þ b1o6 þ b2o4 þ b3o2 þ b4, (17)

where

b1 ¼ �2p2 þ p23 � q23; b2 ¼ 2p0 þ p22 � 2p1p3 þ 2q1q3 � q2
2; b3 ¼ p21 � 2p0p2 � q21; b4 ¼ p20.

In the generalized Sturm criterion, the discrimination sequence plays a central role in determining the number of real

roots of polynomial F(o). The MAPLE routine discr (Hu and Wang, 2002) enables one to derive the discrimination

sequence D1ðF Þ2D8ðF Þ as follows

1; d0; d0d1; d1d2; d2d3; d3d4; d4d5; d2
5d6 (18)

where d02d6 are given in Appendix D.

Parameters used for numerical simulations are presented in Table 1. Obviously, the Routh–Hurwitz conditions R240

and R340 hold true in the parameter space shown in Fig. 2. If the parameter combination (gv,V) falls into the hatched

region in Fig. 2 for t ¼ 0:0 s, then the system is Routh–Hurwitz stable. The point of intersection of the two curves

R4 ¼ 0 and gv ¼ 0 represents the flutter point of the uncontrolled system, which reveals that the flutter speed of the

system is VF ¼ 23:45m/s. An alternative method to obtain the flutter speed of the uncontrolled system is to compute

the eigenvalue lc of the system matrix A0(V) under various flow speeds, as shown in Fig. 3. To validate the stability of

this delay-free system, the plunging and pitching time histories of the airfoil for three different flight speeds,

V ¼ 23; 23:45; 23:55m/s, are computed, as shown in Fig. 4. It can be seen from Fig. 4 that the responses of the airfoil

are asymptotically stable for VoVF , unstable for V4VF , and maintain sustained oscillation for V ¼ VF .
Table 1

The system parameters for simulations

sp ¼ 1.0m

m ¼ 2.049kg

ka ¼ 6.833Nm/rad

Ia ¼ mx2
a þ 0:0517 kgm2

b ¼ 0.135m

kh ¼ 2844.4N/m

xa ¼ ½0:0873� ð1þ āÞb�m

ca ¼ 0.036N s/rad

ra ¼ 1.225kg/m3

ā ¼ �0:6847
ch ¼ 27.43N s/m

VF ¼ 23.45m/s
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Fig. 2. Routh–Hurwitz stable region, t ¼ 0.0 s.
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Fig. 3. Root loci of open loop system, t ¼ 0.0 s.
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To obtain the parametric region of the delay-independent stability of the system, we consider the following parameter

space:

O ¼ fðgv;V Þjjgvjp1:5; 0pVp30g. (19)

We can easily verify that d040, d2o0, d3o0, d4o0, and d640 always hold. As shown in Fig. 5, the stable region in the

Routh–Hurwitz sense is divided by curves d1 ¼ 0, d5 ¼ 0 and R4 ¼ 0 into four sub-regions marked by I, II, III, and IV

respectively. The modified sign tables of the corresponding discrimination sequence in each sub-region are listed in

Table 2. If the parameter combination (gv,V) falls into regions II and IV in Fig. 5, then we have d040, d1o0, d2o0,

d3o0, d4o0, d540, and d640. Hence the modified sign table is ½ 1 1 �1 1 1 1 �1 1 0 �, the number of

variation of signs is 4, and l � 2s ¼ 0 holds. Based upon the generalized Sturm criterion, we conclude that F ðoÞ ¼ 0 has

no real roots; thus, according to Theorem 1, the system is delay-independently stable in sub-regions II and IV. In sub-

region I, we have d040, d1o0, d2o0, d3o0, d4o0, d5o0, and d640, the modified sign table is

½ 1 1 �1 1 1 1 1 1 1 �, and the number of variation of signs is 2. Thus, FðoÞ ¼ 0 has l=2s ¼ 2 distinct

real roots. In the same way, we can see that F ðoÞ ¼ 0 has two distinct real roots in sub-region III.

In what follows we attempt to verify the region obtained of the delay-independent stability of the system by solving

the delay differential Eq. (7) in the time domain. For this purpose, within the delay-independent stability region, we
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Fig. 4. Time history of the system, t ¼ 0.0 s: (a) plunging response and (b) pitching response.
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Fig. 5. Delay-independent stable region of the system.
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take the velocity feedback gain gv as 0.15Nms/rad, and the flow speed V as 20m/s. The plunging and pitching

responses of the system for different time delays (t ¼ 10 and 30ms) are shown in Fig. 6. Obviously, the system is

asymptotically stable for those time delays. In fact, an arbitrary time delay can be used in the numerical simulations to

verify the delay-independent stability.
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Table 2

The sign tables of the discrimination sequence of F(o) (used for analyzing delay-independent stability)

Sub-region S1 S2 S3 S4 S5 S6 S7 S8 l�2s

I 1 1 �1 1 1 1 1 1 4

II 1 1 �1 1 1 1 �1 1 0

III 1 1 1 �1 1 1 1 1 4

IV 1 1 1 �1 1 1 �1 1 0

0
-10

-8

-6

-4

-2

0

2

4

6

8

10

-3

-2

-1

0

1

2

3

�,
 d

eg
h,

 m
m

1 2 3 4 5 6 7 8 9 10

t, s

0 1 2 3 4 5 6 7 8 9 10

t, s

� = 30ms
� = 10ms

� = 30ms
� = 10ms

Fig. 6. Responses when system parameters fall into delay-independent stable region: (a) plunging response and (b) pitching response.
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In summary, within the parameter space O, the system is delay-independently stable if and only if the parameter

combination falls into sub-regions II and IV in Fig. 5. No region of the delay-independent stability of the system exists

when the flow speed V4VF . This is an important feature of the controlled aeroelastic system.

3.2. Stability switches

For the aeroelastic system, the delay-independently stable region only exists in the range of the flow speed which is

less than the flutter speed of the open loop system. In practical applications, the delay-independently stable region is

usually a very small part in the parameter space. If the system parameters do not fall into the delay-independent stable

region, the real part of at least one characteristic root changes its sign when the time delay varies. That is, the stability of

the controlled system cannot keep unchanged with an increase of time delay. Such a change with increase of time delay

is referred to as the stability switch.
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Note that, once a positive root o of F(o) is found, the critical time delays are given by

tck ¼
y
o
þ

2kp
o
; k ¼ 0; 1; 2; . . . . (20)

where y 2 ½0; 2pÞ satisfies a set of triangle equations

sin y ¼
PI ðoÞQRðoÞ � PRðoÞQI ðoÞ

Q2
RðoÞ þQ2

I ðoÞ
;

cos y ¼ �
PRðoÞQRðoÞ þ PI ðoÞQI ðoÞ

Q2
RðoÞ þQ2

I ðoÞ
:

8>>><
>>>:

(21)

As analyzed in Wang and Hu (2000), if F(o) ¼ 0 has no real root, the system does not undergo any stability switches as

the time delay t increases. That is, the system is delay-independently stable if it is asymptotically stable when the time

delay disappears, or unstable for an arbitrary time delay if the delay-free system is unstable. If F(o) ¼ 0 has any real

roots, the root l of Eq. (9) can be regarded as a function of t. Once a pair of pure imaginary characteristic roots �io is

found, the corresponding critical values of time delay in Eq. (20) can be determined. Here we assume that �io are not a

pair of repeated characteristic roots. To assess the tendency of imaginary roots, we have the following equation

S ¼ sgn Re
dlðtÞ
dt

� �����
l¼io

	 

¼ sgnðF 0ðoÞÞ. (22)

The generalized Sturm criterion can be used to analyze the stability switch of the controlled system with time delay, thus

we have the following theorem (Hu and Wang, 2002).

Theorem 2. Assume that Eq. (9) has no pure imaginary characteristic roots satisfying QðioÞ ¼ 0 and the roots of F(o) are

simple. Let l and s be the number of non-zero terms and the number of variation of sign in the modified sign table of the

discrimination sequence of F(o), then following facts are true:
(a)
 If l � 2s ¼ 0, the system is delay-independent stable or unstable for any time delay, depending on whether the system

free of time delay is asymptotically stable or not.
(b)
 If l � 2s ¼ 2 and the system free of time delay is asymptotically stable, there exists a critical time delay tc40 such that

the system remains asymptotically stable when t 2 ½0; tcÞ, and becomes unstable when tXtc. If l � 2s ¼ 2 and the

system is unstable for t ¼ 0, it keeps unstable for an arbitrary time delay t.

(c)
 If l � 2s42, a finite number of stability switches occurs as time delay t increases and the system becomes unstable at

last.
-3 -2 -1 0 1 2 3
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40

V
, m

/s

R4 = 0

d5 = 0 d5 = 0

d3 = 0 d3 = 0

d1 = 0 d1 = 0d2 = 0 d2 = 0

I

II

III

IV

V

VI

VII

VIII

IX

X

gv, Nms/rad

Fig. 7. Regions divided by curves.
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Table 3

The sign tables of the discrimination sequence of F(o) (used for analyzing stability switches)

Sub-region D0 d1 d2 d3 d4 d5 d6 S1 S2 S3 S4 S5 S6 S7 S8 l�2s

I, X + + + + � � + 1 1 1 1 1 �1 1 1 4

II, IX + + + � � � + 1 1 1 1 �1 1 1 1 4

III, VIII + � + � � � + 1 1 �1 �1 �1 1 1 1 4

IV, VII + � � � � � + 1 1 �1 1 1 1 1 1 4

V + � � � � � + 1 1 �1 1 1 1 1 1 4

VI + � � � � + + 1 1 �1 1 1 1 �1 1 0

Y.H. Zhao / Journal of Fluids and Structures 25 (2009) 1–2510
To apply this theorem to aeroelastic simulations, we consider the parameter region defined by

Ō ¼ fðgv;V Þjjgvjp3:5Nms=rad; 20m=spVp40m=sg. (23)

Fig. 7 shows that the curves d1 ¼ 0, d2 ¼ 0, d3 ¼ 0, d5 ¼ 0, and R4 ¼ 0 divide the region Ō into 10 sub-regions (except

for delay-independent stable region), which are numbered by I, II,y,X. The sign tables of the discrimination sequence

of the system are shown in Table 3. As can be seen, F(o) has no real roots and the system is unstable for t ¼ 0, so the

aeroelastic system is unstable for arbitrary time delay tX0 when the parameter combination (gv,V) falls into the sub-

region VI. F(o) always has two positive real roots when the parameter combination (gv,V) falls into other sub-regions

except for sub-region VI. In the following, the stability switches of the system will be demonstrated through a few case

studies.
Case 1. gv ¼ �1.0Nms/rad, V ¼ 25.0m/s
This parameter combination (gv,V) falls into the sub-region IV in Fig. 7. It is easy to know that the polynomial F(o)
has two distinct real roots o1 ¼ 33:8544 and o2 ¼ 15:3061 satisfying F 0ðo1Þ40 and F 0ðo2Þo0, respectively. The

corresponding critical values of time delay are

tc1;0 ¼ 0:0293; tc1;1 ¼ 0:2149; tc1;2 ¼ 0:4005; tc1;3 ¼ 0:5861; tc1;4 ¼ 0:7717;

tc2;0 ¼ 0:2957; tc2;1 ¼ 0:7062; tc2;2 ¼ 1:1167; tc2;3 ¼ 1:5272; tc2;4 ¼ 1:9377:

(
(24)

They can be ranked as

tc1;0otc1;1 otc2;0otc1;2otc1;3otc2;1o � � � . (25)

Because the system is asymptotically stable for t ¼ 0 and F 0ðo1Þ40, the controlled system is asymptotically stable for

t 2 ½0; tc1;0Þ. As the time delay t increases, a pair of conjugate roots cross the pure imaginary axis, so the characteristic

equation of system adds a new pair conjugate roots with positive real parts for crossing at tc1,0. Increasing the time

delay further, the characteristic equation of the system has a root with positive real part, so the system is unstable for

t 2 ðtc1;0; tc1;1Þ. As a result, with the increase of time delay, the characteristic equation of system adds another new pair

of conjugate roots with positive real parts for crossing at tc1,1, so the controlled system is unstable when t 2 ðtc1;1; tc2;0Þ.

Note that the following inequalities hold:

tc1;kþ1 � tc1;k ¼
2p
o1

o
2p
o2
¼ tc2;kþ1 � tc2;k; tc1;0otc2;0. (26)

Based on the above inequalities, we conclude that in Eq. (25) tc1,0 is followed immediately by tc1,1, but any tc2,k cannot

be flowed by tc2,k+1. Therefore, the system has at least one pair of characteristic roots with positive real part if t4tc1;0.

This implies that the equilibrium of system is unstable as long as t4tc1;0 holds.

Therefore, the system undergoes a stability switch once as the time delay varies from zero to infinity. Fig. 8 shows the

detrimental effect of the delay on the aeroelastic response. It can be seen that time delay causes responses of the system

to attenuate for t ¼ 0:028 s 2 ½0; tc1;0Þ, and to diverge for t ¼ 0:030 s 2 ðtc1;0; tc1;1Þ.
Case 2. gv ¼ �2.3Nms/rad, V ¼ 25.0m/s
This parameter combination (gv,V) falls into the sub-region, in Fig. 7, and the polynomial F(o) has two distinct real

roots o1 ¼ 46:3558 and o2 ¼ 8:8656 satisfying F 0ðo1Þ40 and F 0ðo2Þo0, respectively. The corresponding critical values
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of time delay are

tc1;0 ¼ 0:0305; tc1;1 ¼ 0:1661; tc1;2 ¼ 0:3016; tc1;3 ¼ 0:4372; tc1;4 ¼ 0:5727;

tc2;0 ¼ 0:5193; tc2;1 ¼ 1:2281; tc2;2 ¼ 1:9368; tc2;3 ¼ 2:6455; tc2;4 ¼ 3:3542:

(
(27)

They are ranked as

tc1;0otc1;1otc1;2otc1;3 otc2;0otc1;4o � � � (28)

One can similarly find that the system is asymptotically stable for t 2 ½0; tc1;0Þ, and unstable for t4tc1;0. The system

undergoes the stability switch once as time delay varies from zero to infinity.
Case 3. gv ¼ �3.0Nms/rad, V ¼ 30.0m/s
This parameter combination (gv,V) falls into the sub-region II in Fig. 7, and the polynomial F(o) has two distinct

positive real roots o1 ¼ 56:2742 and o2 ¼ 9:2920 satisfying F 0ðo1Þ40 and F 0ðo2Þo0, respectively. The corresponding

critical values of time delay are

tc1;0 ¼ 0:0265; tc1;1 ¼ 0:1381; tc1;2 ¼ 0:2498; tc1;3 ¼ 0:3614; tc1;4 ¼ 0:4731; tc1;5 ¼ 0:5848;

tc2;0 ¼ 0:5002; tc2;1 ¼ 1:1764; tc2;2 ¼ 1:8526; tc2;3 ¼ 2:5288; tc2;4 ¼ 3:2050; tc2;5 ¼ 3:8812:

(
(29)

They are sorted as

tc1;0otc1;1otc1;2otc1;3otc1;4 otc2;0otc1;5o � � � . (30)

We claim that the system is asymptotically stable for t 2 ½0; tc1;0Þ, and unstable for t4tc1;0.
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Case 4. gv ¼ �3.0Nms/rad, V ¼ 24.0m/s
This parameter combination (gv,V) falls into the sub-region I in Fig. 7, and the polynomial F(o) has two distinct

positive real roots o1 ¼ 58:2388 and o2 ¼ 6:7238 satisfying F 0ðo1Þ40 and F 0ðo2Þo0, respectively. The corresponding

critical values of time delay are

tc1;0 ¼ 0:0267; tc1;1 ¼ 0:1346; tc1;2 ¼ 0:2425; tc1;3 ¼ 0:3504; tc1;4 ¼ 0:4582; tc1;5 ¼ 0:5661;

tc1;6 ¼ 0:6740; tc1;7 ¼ 0:7819;

tc2;0 ¼ 0:6878; tc2;1 ¼ 1:6223; tc2;2 ¼ 2:5568; tc2;3 ¼ 3:4912; tc2;4 ¼ 4:4257; tc2;5 ¼ 5:3602;

tc2;6 ¼ 6:2947; tc2;7 ¼ 7:2291:

8>>>><
>>>>:

(31)

We rank these critical time delays as

tc1;0otc1;1otc1;2otc1;3otc1;4otc1;5otc1;6 otc2;0o � � � . (32)

Obviously, the system is asymptotically stable for t 2 ½0; tc1;0Þ, and unstable for t4tc1;0.
Case 5. gv ¼ 1.0Nms/rad, V ¼ 25.0m/s
This parameter combination (gv,V) falls into the sub-region VII in Fig. 7, and the polynomial F(o) has two distinct

positive real roots o1 ¼ 33:8544 and o2 ¼ 15:3061 satisfying F 0ðo1Þ40 and F 0ðo2Þo0, respectively. The corresponding

critical values of time delay are

tc1;0 ¼ 0:1221; tc1;1 ¼ 0:3077; tc1;2 ¼ 0:4933; tc1;3 ¼ 0:6789; tc1;4 ¼ 0:8645; tc1;5 ¼ 1:0501;

tc2;0 ¼ 0:0904; tc2;1 ¼ 0:5009; tc2;2 ¼ 0:9115; tc2;3 ¼ 1:3220; tc2;4 ¼ 1:7325; tc2;5 ¼ 2:1430:

(
(33)

We sort these critical time delays as

tc2;0o tc1;0otc1;1otc1;2 otc2;1otc1;3o � � � . (34)

Clearly, the controlled system is unstable for t 2 ½0; tc2;0Þ, t 2 ½tc1;0;þ1Þ and stable for t 2 ðtc2;0; tc1;0Þ. Hence, the

number of stability switches is 2. Figs. 9 and 10 verify this conclusion. From this analysis it appears that the presence of

small time delay can be beneficial, in the sense of postponing the occurrence of flutter instability. Purposefully

introduced time delay may be used to improve both systems’ stability and performance. Of course, time delay in control

system is usually regarded as detrimental, in the sense of the system reliability.
Case 6. gv ¼ 2.3Nms/rad, V ¼ 25.0m/s
This parameter combination (gv,V) falls into the sub-region VIII in Fig. 7, and the polynomial F(o) has two distinct

positive real roots o1 ¼ 46:3558 and o2 ¼ 8:8656 satisfying F 0ðo1Þ40 and F 0ðo2Þo0, respectively. The corresponding

critical values of time delay are

tc1;0 ¼ 0:0983; tc1;1 ¼ 0:2338; tc1;2 ¼ 0:3694; tc1;3 ¼ 0:5049; tc1;4 ¼ 0:6405; tc1;5 ¼ 0:7760;

tc1;6 ¼ 0:9116; tc1;7 ¼ 1:0471;

tc2;0 ¼ 0:1650; tc2;1 ¼ 0:8737; tc2;2 ¼ 1:5824; tc2;3 ¼ 2:2911; tc2;4 ¼ 2:9998; tc2;5 ¼ 3:7086;

tc2;6 ¼ 4:4173; tc2;7 ¼ 5:1260;

8>>>><
>>>>:

(35)

which are ranked as

tc1;0otc2;0o tc1;1otc1;2otc1;3otc1;4otc1;5 otc2;1otc1;6o � � � . (36)

It is demonstrated that the system is unstable for t 2 ½0;þ1Þ.
Case 7. gv ¼ 3.0Nms/rad, V ¼ 30.0m/s
This parameter combination (gv,V) falls into the sub-region IX in Fig. 7; the polynomial F(o) has two distinct

positive real roots o1 ¼ 56:2742 and o2 ¼ 9:2920 satisfying F 0ðo1Þ40 and F 0ðo2Þo0, respectively. The corresponding
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critical values of time delay are

tc1;0 ¼ 0:0823; tc1;1 ¼ 0:1940; tc1;2 ¼ 0:3056; tc1;3 ¼ 0:4173; tc1;4 ¼ 0:5289; tc1;5 ¼ 0:6406;

tc1;6 ¼ 0:7522; tc1;7 ¼ 0:8639;

tc2;0 ¼ 0:1621; tc2;1 ¼ 0:8383; tc2;2 ¼ 1:5145; tc2;3 ¼ 2:1907; tc2;4 ¼ 2:8669; tc2;5 ¼ 3:5431;

tc2;6 ¼ 4:2193; tc2;7 ¼ 4:8955;

8>>>><
>>>>:

(37)

sorted as

tc1;0otc2;0o tc1;1otc1;2otc1;3otc1;4otc1;5otc1;6 otc2;1otc1;7o � � � . (38)

This reveals that the system is unstable for t 2 ½0;þ1Þ.
Case 8. gv ¼ 3.0Nms/rad, V ¼ 24.0m/s
This parameter combination (gv,V) falls into the sub-region X in Fig. 7; the polynomial F(o) has two distinct positive

real roots o1 ¼ 58:2388 and o2 ¼ 6:7238 satisfying F 0ðo1Þ40 and F 0ðo2Þo0, respectively. The corresponding critical

values of time delay are

tc1;0 ¼ 0:0806; tc1;1 ¼ 0:1885; tc1;2 ¼ 0:2964; tc1;3 ¼ 0:4043; tc1;4 ¼ 0:5122; tc1;5 ¼ 0:6201;

tc1;6 ¼ 0:7280; tc1;7 ¼ 0:8358;

tc2;0 ¼ 0:2206; tc2;1 ¼ 1:1551; tc2;2 ¼ 2:0895; tc2;3 ¼ 3:0240; tc2;4 ¼ 3:9585; tc2;5 ¼ 4:8930;

tc2;6 ¼ 5:8274; tc2;7 ¼ 6:7619:

8>>>><
>>>>:

(39)

We sort these critical time delays as follows

tc1;0otc1;1 otc2;0otc1;2otc1;3otc1;4 otc1;5otc1;6otc1;7o � � � . (40)

Again, the system is unstable for t 2 ½0;þ1Þ.
In summary, on the one hand, time delays in the control system are potential sources for causing the system to be

unstable. On the other hand, we can stabilize an unstable system without any time delay by introducing an appropriate

choice of time delays.
3.3. Flutter speed of the controlled system with a single time delay

In Section 3.2, the stability of the controlled system with fixed flow speed and feedback gain is studied through

stability switches, and the critical time delays of the system are computed. This section focuses on the stability of the

controlled system with nonzero time delay on the basis of the delay-free system.

Velocity feedback gain gv, flutter speed VF, and flutter frequency oF of the controlled system satisfies

Dðu; tÞ ¼ DðV ; io; tÞ ¼ PðV ; ioÞ þQðV ; io; gvÞ e
�iot ¼ 0, (41)

where u ¼ VF oF

� �T
. Separating DðV ; ioÞ into its real and imaginary parts, one obtains

FðuðtÞ; tÞ ¼
QRðo; gvÞ cos otþQI ðo; gvÞ sin otþ PRðV ;oÞ

QI ðo; gvÞ cos ot�QRðo; gvÞ sin otþ PI ðV ;oÞ

" #
¼ 0. (42)

A standard predictor-corrector method can be used for the continuation of the above nonlinear equation. Let u0 ¼
½VF0 oF0 �

T is a point on the curve u(t) at t ¼ t0 and assume Fuðu0; t0Þ is nonsingular at (u0, t0). Differentiating Eq.

(42) with respect to t at t ¼ t0 yields

Fuðu0; t0Þu0ðt0Þ þ Ftðu0; t0Þ ¼ 0, (43)

where u0ðt0Þ denotes the slope of the tangent line to the solution curve at (u0, t0). Because Fuðu0; t0Þ is nonsingular, the
set of linear algebra equations has a unique solution, thus the tangent line to the solution curve at point (u0, t0) can be

written as

T0ðtÞ ¼ u0 þ ðt� t0Þu0ðt0Þ. (44)
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One can take the point T0(t1), t1 on this tangent line as an initial approximation to the solution (u1, t1), then the

Newton–Raphson iteration method can be used to obtain the new solution point (u1, t1). Once the solution u(t) is
obtained, flutter speed and frequency of the controlled system can be computed as a function of time delay t.
As shown in Fig. 11, the flutter speed of the system decreases with the increase of time delay. It can be seen that,

for the large velocity feedback gain |gv|, time delay has a strong effect on flutter speed and flutter frequency

of the controlled system. When t ¼ 0:032 s, the flutter speed of the controlled system is almost not influenced by

feedback gain |gv|. Obviously, the continuation method provides an efficient way to compute the stability boundary

of the controlled system with time delay. The above method can be easily extended to handle the system with multiple

time delays.
4. Critical time delays of the controlled system with multiple time delays

In previous sections, stability of the single time-delayed system in parameter space is analyzed by using the

generalized Sturm criterion for polynomials. However, systems with multiple time delays may be encountered in control

engineering. In the field of aeroservoelasticity, multiple time delays may stem from the control system which includes

the multiple control surfaces driven by actuators. For a system with multiple time delays, the generalized Sturm

criterion is too cumbersome to be used to predict the stability of the system. Therefore, an alternative method should be

developed. In practical applications, we are only interested in the critical time delays of the above system, which can be

obtained by solving a quadratic eigenvalue problem.

This section handles the aeroelastic system with multiple time delays in feedback loops, given by

_X ¼
Pm

k¼0AkXðt� tkÞ; t40;

XðtÞ ¼ uðtÞ; t 2 ½�tm; 0�;

(
(45)

where 0 ¼ t0ot1o � � �otm, Ak 2 R
n�n.

We have the characteristic equation of the system in Eq. (45) as follows

TðlÞX̄ ¼ �lI þ
Xm

k¼0

Ak e
�tkl

 !
X̄ ¼ 0; jjX̄ jj ¼ 1. (46)

Define operator H as follows:

YðY ; lÞ ¼ TðlÞY þ YT�ðlÞ ¼
Xm

k¼0

ðAkY e�tkl þ YAT
k e�tk l̄Þ � 2Y Rel; (47)

herein the asterisk denotes complex conjugate transpose, and l̄ is complex conjugate of l.
It is easy to prove that for the given l 2 C and X̄

�
X̄ ¼ 1, Eq. (46) is equivalent to the following expressions:

YðX̄X̄
�
; lÞ ¼ 0 ^ X̄

�
TðlÞX̄ ¼ 0, (48)

where the sign ^ means logical ‘‘and’’.
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The imaginary characteristic roots play a critical role in stability analysis of the system, so substituting l ¼ io into

YðX̄X̄
�
; lÞ ¼ 0 in Eq. (48) and multiply with eitcmo, we have

z2X̄X̄
�
AT

m þ z
Xm�1
k¼0

ðAkX̄X̄
�
e�ifk þ X̄X̄

�
AT

k eifk Þ þ AmX̄X̄
�
¼ 0, (49)

where

z ¼ eitcmo;

tcm ¼
ArgðzÞ þ 2qmp

o
; tck ¼

fk þ 2qkp
o

;

fk 2 ½�p; p�; k ¼ 1; . . . ;m� 1;

qs 2 Z; s ¼ 1; . . . ;m:

8>>>>><
>>>>>:

(50)

Substituting l ¼ io into X̄
�
TðlÞX̄ ¼ 0 in Eq. (48), we obtain

o ¼ �iX̄� Amz�1 þ
Xm�1
k¼0

Ak e
�ifk

 !
X̄ . (51)

Note that Eq. (49) is difficult to solve directly. However, we can obtain a vectorized version of Eq. (49) through the

operator vec. In matrix algebra, the vec operator can vectorize a matrix by stacking its columns (it is conventional that

column rather than row stacking is used). There is an important relationship between the vec operator and the

Kronecker product, that is

vecðX1BX2Þ ¼ ðX
T
2 � X1ÞvecB. (52)

Once the vec operator is applied in Eq. (49), we can obtain the following quadratic eigenproblem:

z2Am � I þ z
Xm�1
k¼0

LkðfkÞ þ I � Am

 !
Ȳ ¼ 0, (53)

where

Ȳ ¼ vecðX̄X̄
�
Þ; LkðfkÞ ¼ I � Ak e

�ifk þ Ak � I eifk . (54)

Note that the above quadratic eigenproblem can be recast into the following generalized eigenvalue problem:

0 I

I � Am

Pm�1
k¼0

LkðfkÞ

0
B@

1
CA Ȳ

zȲ

 !
¼ z

I 0

0 �Am � I

 !
Ȳ

zȲ

 !
. (55)

Eq. (50) reveals that only the unit eigenvalue will be of interest, so the Cayley transformation

z ¼
1þ is
1� is

(56)

can be applied to Eq. (55). Thus, Eq. (55) becomes

ðĀ� B̄ÞV̄ ¼ sðiĀþ iB̄ÞV̄, (57)

where

Ā ¼
0 I

I � Am

Pm�1
k¼0 LkðfkÞ

 !
; B̄ ¼

I 0

0 �Am � I

 !
.

Once the real eigenvalues are found for the generalized eigenvalue problem, Eq. (57), the unit eigenvalue z can be easily

obtained by Eq. (56).

We now use the theory described in this section to predict the stability of the 2-dof system with a single or multiple

time delays.

Firstly, the critical time delay of the single time delay system Eq. (7) is obtained by using the quadratic eigenvalue

method. Parameters used for simulation are shown in Table 1. Fig. 12 presents the critical time delays of this controlled

system in parameter space (gv,V).



ARTICLE IN PRESS

20

25

30

35

-4
-3

-2
-1

0

0

0.01

0.02

0.03

0.04

0.05

gv, Nms/rad

V, m
/s

� c
, s

Fig. 12. Critical time delay of the controlled aeroelastic system.

Y.H. Zhao / Journal of Fluids and Structures 25 (2009) 1–25 17
Secondly, we test the present method by a controlled aeroelastic system with two time delays. Here we assume that

the time delays are incommensurate. If time delays in pitching displacement and pitching velocity feedback signals are

considered, the controlled aeroelastic system can be written as

_X ¼ A0ðV ÞX þ A1ðgpÞXðt� t1Þ þ A2ðgvÞXðt� t2Þ, (58)

where

A1 ¼

0 0 0 0

0 0 0 0

0 gpb32 0 0

0 gpb42 0 0

2
66664

3
77775; b32 ¼ c34; b42 ¼ c44,

t1 and t2 are time delays in pitching displacement and pitching velocity, respectively. gp and gv are feedback gains in

pitching displacement and pitching velocity, respectively.

When t1 ¼ t2 ¼ 0, the characteristic equation of the system Eq. (58) is given by

DðlÞ ¼ l4 þ p̄3l
3
þ p̄2l

2
þ p̄1lþ p̄0 ¼ 0, (59)

where

p̄3 ¼ �a44 � a33 � gvc44,

p̄2 ¼ �a42 � a31 þ a33a44 � a43a34 þ gvða33c44 � a43c34Þ � gpb42,

p̄1 ¼ �a43a32 þ a42a33 þ a31a44 � a41a34 þ gvða31c44 � a41c34Þ þ gpða33b42 � a43b32Þ,

p̄0 ¼ a31a42 � a41a32 þ gpða31b42 � a41b32Þ.

The corresponding Routh–Hurwitz condition is

Q1 ¼ p̄340;

Q2 ¼ p̄240;

Q3 ¼ p̄040;

Q4 ¼ p̄1ðp̄3p̄2 � p̄1Þ � p̄23p̄040:

8>>>><
>>>>:

(60)
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As the first insight to the system, the flutter speed of the controlled system free of time delay is computed, as shown in

Fig. 13. To compute the critical time delays of the system, we take gp as �120Nm/rad and gv as �0.8Nm/rad. In this

case we know that the flutter speed VF of the delay-free system is 35.7m/s. Here the flow speed V is taken as 30m/s in

simulation, which is lower than the flutter speed 35.7m/s. The critical time delay curves on the plane of (t1, t2) are
shown in Fig. 14. Obviously, the system will undergo stability switches as these two time delays vary from zero to

infinity. Usually, only the smallest critical time delay will be of interest.

Fig. 15 shows the enlarged curve in the rectangular region of Fig. 14. In Fig. 15, points a–g are critical time delays for

t1 ¼ 0, these critical time delays are given in Table 4. It is easy to examine that the system is stable when t1 and t2 fall
into the shadow regions in Fig. 15(a). As shown in Fig. 15(b), on the plane of (t1, t2), we select a point with t1 ¼ 0:001 s
and t2 ¼ 0:018 s in the stable region, and another point with t1 ¼ 0:001 s and t2 ¼ 0:019 s in the outer of the stable

region. The responses of the system for these two sets of time delays are shown in Fig. 16. This proves that the quadratic

eigenvalue method gives the correct stable regions.

As shown in Fig. 17, with the increase of flow speed, the stable regions of the system become small. In particular,

when flow speed (V ¼ 36m/s is used for simulation) is larger than flutter speed of the controlled system free of time

delays, there still exists the stable region, as shown in Fig. 17(c). To verify this phenomenon, time delays t1 ¼ 0:001 s,
t2 ¼ 0:01 s (see the point in Fig. 17(c)), and V ¼ 36m/s are used for simulation. It is clear from Fig. 18 that the motion

damps out. Therefore, we conclude that one can stabilize an aeroelastic system by introducing an appropriate choice of

small time delays.
5. The rightmost eigenvalues of the controlled system with multiple time delays

The principal difficulty in studying delay differential equations (DDEs) lies in its special transcendental character.

Delay equations always lead to an infinite number of characteristic roots. However, only a finite number have real parts

greater than a given constant. Therefore, stability of the time-delayed system can be determined by computing the

rightmost eigenvalues of the DDEs. Numerical approaches for characteristic roots computation of linear autonomous

DDEs have been recently proposed (Breda et al., 2005; Breda, 2006). They are based on the discretization of either the

solution operator or the infinitesimal generator of the original equation. In this section, the rightmost roots of the

controlled aeroelastic system with time delays are computed through the infinitesimal generator approximation.

For the aeroelastic system (45) with multiple time delays, the stability of the system can be determined by eigenvalues

of the following characteristic equation:

detðTðlÞÞ ¼ det �lI þ
Xm

k¼0

Ak e
�tkl

 !
¼ 0. (61)

For the purpose of stability analysis, a numerical method that automatically computes the rightmost roots of Eq. (61)

would be of interest. Note that the solution operator S(t), tX0 of Eq. (45) is defined by the relation

SðtÞuðyÞ ¼ X tðyÞ; u 2 Ds, (62)

where Ds ¼ CBð½�tm; 0�;R
nÞ, CB is Banach space, and X tðyÞ ¼ Xðtþ yÞ; y 2 ½�tm; 0�. The infinitesimal generator A of

S(t) is defined as

AuðyÞ ¼ _uðyÞ; u 2 DgðAÞ;

DgðAÞ ¼ / 2 Dsj _u 2 Ds and _uð0Þ ¼
Pm
k¼0

Akuð�tkÞ

	 

:

8><
>: (63)

So, Eq. (45) can be recast as an abstract Cauchy problem of the form

dX t

dt
¼ AX t; tX0;

X0 ¼ u:

8<
: (64)

From the above equations, one can obtain the following result:

detðTðlÞÞ ¼ 03l 2 sðAÞ, (65)

where sð�Þ is the spectrum operator. Since the spectrum of the solution generator consists of the characteristic roots,

such roots can be computed as the eigenvalues of suitable matrices approximating this infinitesimal generator.
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Table 4

Critical time delays of the system for t1 ¼ 0

Point a Point b Point c Point d Point e Point f Point g

t2 ¼ 0.0222 s t2 ¼ 0.1257 s t2 ¼ 0.1361 s t2 ¼ 0.2499 s t2 ¼ 0.2651 s t2 ¼ 0.3638 s t2 ¼ 0.4044 s
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Fig. 16. Validation of the stability for the controlled aeroelastic system with two time delays for V ¼ 30m/s, gp ¼ �120Nm/rad,

gv ¼ �0.8Nms/rad: (a) plunge response and (b) pitching response.
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To make a matrix approximation to the infinitesimal generator A, let us consider the following Chebyshev division

points in ½�tm; 0�:

yN;i ¼
tm

2
cos i

p
N

� �
� 1

� �
; i ¼ 0; 1; . . . ;N, (66)

where �tm ¼ yN;NoyN;N�1o � � �oyN;1oyN;0 ¼ 0. Let uN be an approximation of u, and can be written as

uN ðyÞ ¼
XN

j¼0

½ljðyÞ � In�f j , (67)

where � denotes Kronecker products, ljð�Þ is the Lagrange interpolating polynomial, and f j ¼ uðyN ;jÞ.

On the basis of splicing condition and Eq. (63), one obtains

ðAuÞð0Þ ¼ _uð0Þ ’
Pm
k¼0

AkuN ð�tkÞ ¼ ðAN f Þ0;

ðAuÞðyN;iÞ ¼ _uðyN ;iÞ ’ _uN ðyN;iÞ ¼ ðAN f Þi; i ¼ 1; 2; . . . ;N;

8><
>: (68)
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where AN denotes the discrete form of A, and f ¼ ½f T
0 ; f

T
1 ; . . . ; f

T
N �

T. Obviously, Eq. (69) can be recast as

AN

f 0

f 1

..

.

f N

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

e0 e1 � � � eN

g10 g11 � � � g1N

..

. ..
. . .

. ..
.

gN0 gN1 � � � gNN

2
666664

3
777775

f 0

f 1

..

.

f N

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

Pm
k¼0AkuN ð�tkÞ

_uN ðyN;1Þ

..

.

_uN ðyN;N Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
. (69)

The elements in matrix AN can be obtained as

ej ¼
Xm

k¼0

Ak½ljð�tkÞ � In�; gij ¼
_ljðyN;iÞ � In; i ¼ 1; . . . ;N ; j ¼ 0; 1; . . . ;N. (70)

Thus, the rightmost eigenvalues of the above system can be obtained by solving the corresponding eigenvalue problem

for matrix AN.

To illustrate the effectiveness of the present approach, we attempt to compute the rightmost eigenvalues of the

aeroelastic system (7). Fig. 19(a) shows the first eleven rightmost roots of the system when gv ¼ �1.0Nms/rad and

V ¼ 25.0m/s. The critical time delay of the system is tc ¼ 0:0293 s, which is the same as that obtained in Case 1 (see

Section 3.2). When gv ¼ �3.0Nms/rad and V ¼ 30.0m/s, as shown in Fig. 19(b), with an increase of time delay, an

eigenvalue (non-system poles) streams in from �N in the complex plane and becomes ‘‘the most dangerous eigenvalue’’

that determines the stability of the system. In this case the classical eigenvalue continuation method is unable to predict

the critical time delay if one takes the eigenvalues of the delay-free system as starting points. However, the present

method gives the correct result, that is tc ¼ 0:0625 s, which is identical to that obtained in Case 3 (see Section 3.2). As

shown in Fig. 19(c), if we take gv ¼ 1.0Nm s/rad and V ¼ 25m/s, the controlled aeroelastic system is unstable for

t 2 ½0; 0:0904 sÞ, stable for t 2 ð0:0904 s; 0:1221 sÞ, and unstable again for t40:1221 s. When gv ¼ 2.3Nm s/rad and

V ¼ 25m/s, the controlled aeroelastic system is unstable for tX0, as shown in Fig. 19(d).

Next, the controlled aeroelastic system (58) with two time delays is considered to perform the further validation test

for the present method. Fig. 20 shows the effect of time delays on flutter speed of the controlled aeroelastic system when
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gp ¼ 120Nm/rad and gv ¼ �0.8Nm s/rad. It can be seen that the flutter speed of the system is strongly influenced by

time delay t1. One can validate the result shown in Fig. 20 by computing time history responses of the system when time

delays t1 and t2 are given. It is important to point out that the choice of N in the discretization scheme turns out to be

crucial in saving computational time. Here, we use N ¼ 20 for the above simulation.
6. Conclusions

A detailed study is conducted regarding the stability of a two-dimensional airfoil with time-delayed feedback control.

The present work proves that the delay-independently stable domain of the controlled aeroelastic system occupies a

small region of parameter space, and exists only for the case when the flow speed is less than the flutter speed of the

system in the absence of control. If the parameters fall outside of the delay-independently stable region, the system

under different parameter combinations may undergo the stability switches, that is, the initially stable system may

become unstable at each boundary crossing or vice versa. An interesting phenomenon is that a small time delay in the

feedback control can stabilize an aeroelastic system, which is initially unstable under delay-free control. Simulation

results for the multiple time delays case show that the quadratic eigenvalue method and the infinitesimal generator

method are very efficient and reliable for predicting the stability of the linear time-invariant system with multiple time

delays.
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Appendix A

The coefficients of Eqs. (5) and (6) are given as follows:

c0 ¼ mþ prab2sp; c1 ¼ mxa � prab3āsp; c2 ¼ ch þ 2praVbsp,

c3 ¼ prab2Vsp þ 2praVb2ð0:5� āÞsp; c4 ¼ kh; c5 ¼ 2praV2bsp,

d0 ¼ mxa � prab3āsp; d1 ¼ mr2a þ prab4ð0:125þ ā2Þsp; d2 ¼ �2praVb2
ð0:5þ āÞsp,

d3 ¼ ca � 2prab3V ð0:5� āÞāsp; d4 ¼ 0; d5 ¼ ka � 2praV2b2ð0:5þ āÞs.
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Appendix B

The matrices A0 and A2 are given by

A0 ¼

0 0 1 0

0 0 0 1

a31 a32 a33 a34

a41 a42 a43 a44

2
666664

3
777775; A2 ¼

0 0 0 0

0 0 0 0

0 0 0 gvc34

0 0 0 gvc44

2
666664

3
777775,

a31 ¼
c4d1 � c1d4

d0c1 � c0d1
; a32 ¼

c5d1 � c1d5

d0c1 � c0d1
; a33 ¼

c2d1 � c1d2

d0c1 � c0d1
; a34 ¼

c3d1 � c1d3

d0c1 � c0d1
,

a41 ¼
c0d4 � c4d0

d0c1 � c0d1
; a42 ¼

c0d5 � c5d0

d0c1 � c0d1
; a43 ¼

c0d2 � c2d0

d0c1 � c0d1
; a44 ¼

c0d3 � c3d0

d0c1 � c0d1
,

c34 ¼
c1

d0c1 � c0d1
; c44 ¼ �

c0

d0c1 � c0d1
.

Appendix C

PðlÞ ¼ l4 þ p3l
3
þ p2l

2
þ p1lþ p0; QðlÞ ¼ q3l

3
þ q2l

2
þ q1l,

p3 ¼ �a44 � a33; p2 ¼ �a42 � a31 þ a33a44 � a43a34; p1 ¼ �a43a32 þ a42a33 þ a31a44 � a41a34,

p0 ¼ a31a42 � a41a32; q3 ¼ �gvc44; q2 ¼ gvða33c44 � a43c34Þ; q1 ¼ gvða31c44 � a41c34Þ,

PðlÞ ¼ l4 þ p3l
3
þ p2l

2
þ p1lþ p0; QðlÞ ¼ q3l

3
þ q2l

2
þ q1l,

p3 ¼ �a44 � a33; p2 ¼ �a42 � a31 þ a33a44 � a43a34; p1 ¼ �a43a32 þ a42a33 þ a31a44 � a41a34,

p0 ¼ a31a42 � a41a32; q3 ¼ �gvc44; q2 ¼ gvða33c44 � a43c34Þ; q1 ¼ gvða31c44 � a41c34Þ.
Appendix D

d0 ¼ � b1,

d1 ¼ � 8b2 þ 3b21,

d2 ¼ b21b2 þ 3b1b3 � 4b22,

d3 ¼ � 3b31b3 þ b21b22 � 6b21b4 þ 14b1b2b3 � 4b32 þ 16b2b4 � 18b23,

d4 ¼ � b2
1b22b3 � 18b1b2b23 þ 7b2

1b3b4 þ 12b1b22b4 � 48b2b3b4 þ 4b32b3 þ 16b1b24 þ 27b33 þ 4b31b23 � 3b31b2b4,

d5 ¼ � 27b41b24 þ 18b31b2b3b4 � 4b31b33 � 4b21b32b4 þ b21b2
2b23 þ 144b21b2b24 � 6b21b23b4 � 80b1b22b3b4 þ 18b1b2b33

� 192b1b3b24 þ 16b42b4 � 4b3
2b23 � 128b22b24 þ 144b2b2

3b4 þ 256b34 � 27b43,

d6 ¼ b440.
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